import math
from math import sqrt
def isPrime(n):
prime_flag = 0
if(n > 1):
for i in range(2, int(sqrt(n)) + 1):
if (n % i == 0):
prime_flag = 1
break
if (prime_flag == 0):
return True
else:
return False
else:
return False
# main sequence
concatprime = False
start = 2
for a in range(start, 10000):
if isPrime(a) and concatprime == False:
for b in range(a+1, 10000):
if isPrime(b):
ab = str(a)+str(b)
ba = str(b)+str(a)
if isPrime(int(ab)) and isPrime(int(ba)):
#print(str(a)+","+str(b))
for c in range(b+1, 10000):
if isPrime(c):
ac = str(a)+str(c)
ca = str(c)+str(a)
bc = str(b)+str(c)
cb = str(c)+str(b)
if isPrime(int(ac)) and isPrime(int(ca)) and isPrime(int(bc)) and isPrime(int(cb)):
#print(str(a)+","+str(b)+","+str(c))
for d in range(c+1, 10000):
if isPrime(d):
da = str(d)+str(a)
ad = str(a)+str(d)
db = str(d)+str(b)
bd = str(b)+str(d)
dc = str(d)+str(c)
cd = str(c)+str(d)
if isPrime(int(da)) and isPrime(int(ad)) and isPrime(int(db)) and isPrime(int(bd)) and isPrime(int(dc)) and isPrime(int(cd)):
#print(str(a)+","+str(b)+","+str(c)+","+str(d))
for e in range(d+1, 10000):
if isPrime(e):
ea = str(e)+str(a)
ae = str(a)+str(e)
eb = str(e)+str(b)
be = str(b)+str(e)
ec = str(e)+str(c)
ce = str(c)+str(e)
ed = str(e)+str(d)
de = str(d)+str(e)
if isPrime(int(ea)) and isPrime(int(ae)) and isPrime(int(eb)) and isPrime(int(be)) and isPrime(int(ec)) and isPrime(int(ce)) and isPrime(int(ed)) and isPrime(int(de)):
print(str(a)+","+str(b)+","+str(c)+","+str(d)+","+str(e))
print(a+b+c+d+e)
concatprime = True
#start = 10000
break
Nothing fancy, just a personal log with a built in search function so I can recall what is easily forgotten.
Thursday, March 30, 2023
Python Brute Force Solution to Euler Project Problem 60
My cumbersome solution to https://projecteuler.net/problem=60 but I'll take it. I cheated by setting the loop limits to 10000.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment