Code copied from https://towardsdatascience.com/simple-machine-learning-model-in-python-in-5-lines-of-code-fe03d72e78c6
from sklearn.linear_model import LinearRegression
from random import randint
#Training Dataset
TRAIN_SET_LIMIT = 1000
TRAIN_SET_COUNT = 100
TRAIN_INPUT = list()
TRAIN_OUTPUT = list()
for i in range(TRAIN_SET_COUNT):
a = randint(0, TRAIN_SET_LIMIT)
b = randint(0, TRAIN_SET_LIMIT)
c = randint(0, TRAIN_SET_LIMIT)
op = a + (2*b) + (3*c)
TRAIN_INPUT.append([a, b, c])
TRAIN_OUTPUT.append(op)
#Train the Model
predictor = LinearRegression(n_jobs=-1)
predictor.fit(X=TRAIN_INPUT, y=TRAIN_OUTPUT)
#Send test data to the model
X_TEST = [[10, 20, 30]]
outcome = predictor.predict(X=X_TEST)
coefficients = predictor.coef_
print('Outcome : {}\nCoefficients : {}'.format(outcome, coefficients))
No comments:
Post a Comment